Here We Discuss Different Science Related Stuffs... Chapters & Contains. Innovations in Science world And Some Knowledge Stuff ... Come And See & Let Us Know How You Feel

Here Is How We Could Store Data On A Single Atom

Here Is How We Could Store Data On A Single Atom
Data and data storage is in a never-ending arms race. The size and cost of memory shrinks while video and photo resolutions go up, and file sizes balloon. The end result is you just never seem to have enough room on your phone or laptop for all your stuff. But there’s a limit to how small magnetic storage can get, and scientists are inching towards it.


The basic building block of data is a bit, represented by either 1 or 0. The basic building block of ordinary matter is an atom. So scientists have been trying to store a bit using a single atom. It actually makes sense when you think about it.



Magnets have a north and south pole, so depending on which way they are oriented they can represent a one or a zero. Usually, magnetic fields are only noticeable when the magnetic fields of whole clusters of atoms are aligned the same way, but zoom in closer and you’ll see the electrons of atoms basically act as tiny magnets in and of themselves, so theoretically a single atom could be enough to represent a bit.


Despite the rise of solid-state drives, magnetic storage devices such as conventional hard drives and magnetic tapes are still very common. But as our data-storage needs are increasing at a rate of almost 15 million gigabytes per day, scientists are turning to alternative storage devices.



One of these is single-atom magnets: storage devices consisting of individual atoms stuck ("adsorbed") on a surface, each atom able to store a single bit of data that can be written and read using quantum mechanics. And because atoms are tiny enough to be packed together densely, single-atom storage devices promise enormous data capacities.


But although they are no longer science fiction, single-atom magnets are still in basic research, with many fundamental obstacles to be overcome before they can be implemented into commercial devices. EPFL has been at the forefront of the field, overcoming the issue of magnetic remanence, and showing that single-atom magnets can be used to read and write data.



In a new study published in Physical Review Letters, physicists at EPFL's Institute of Physics have used Scanning Tunneling Microscopy to demonstrate the stability of a magnet consisting of a single atom of holmium, an element they have been working with for years.


"Single-atom magnets offer an interesting perspective because quantum mechanics may offer shortcuts across their stability barriers that we could exploit in the future," says EPFL's Fabian Natterer who is the paper's first author. "This would be the last piece of the puzzle to atomic data recording."



The scientists exposed the atom to extreme conditions that normally de-magnetize single-atom magnets, such as temperature and high magnetic fields, all of which would pose risks to future storage devices.


Using a Scanning Tunneling Microscope, which can "see" atoms on surfaces, the scientists found that the holmium atoms could retain their magnetization in a magnetic field exceeding 8 Tesla, which is around the strength of magnets used in the Large Hadron Collider. The authors describe this as "record-breaking coercivity", a term that describes the ability of a magnet to withstand an external magnetic field without becoming demagnetized.



Next, they turned up the heat: The researchers exposed a series of Holmium single-atom magnets to temperatures of up to 45 Kelvin, (-233.15 degrees Celsius), which, for single atoms, is like being in a sauna. The Holmium single-atom magnets remained stable up to a temperature of 35K. Only at around 45K, the magnets began to spontaneously align themselves to the applied magnetic field. This showed that they can withstand relatively high-temperature perturbations and might point to the way forward for running single-atom magnets at more commercially viable temperatures.


"Research in the miniaturization of magnetic bits has focused heavily on magnetic bistability," says Natterer. "We have demonstrated that the smallest bits can indeed be extremely stable, but next we need to learn how to write information to those bits more effectively to overcome the magnetic 'trilemma' of magnetic recording: stability, writability, and signal-to-noise ratio."





Fun fact, there are also some scientists out there trying to store data on a single ELECTRON! It’s called electronic quantum holography, and it is very confusing.



Journey Of SpaceX


Share:

Recent Posts

Universe’s First Type of Molecule Is Found at Last

The first type of molecule that ever formed in the universe has been detected in space for the first time, after decades of searching. S...

Blog Archive

Total Pageviews